展会信息港展会大全

1.Cocos2d-x-3.2编写3d打飞机,粒子管理器代码
来源:互联网   发布日期:2015-09-27 15:12:02   浏览:3507次  

导读:Cocos2d-x中的一个单例效果: #ifndef __Moon3d__ParticleManager__ #define __Moon3d__ParticleManager__ #include cocos2d.h USING_NS_CC; class ParticleManager { public: static ParticleManager* getInstance()//定义获取实例方法,单例设计模式.see n...

Cocos2d-x中的一个单例效果:

#ifndef

__Moon3d__ParticleManager__

#define

__Moon3d__ParticleManager__

#include

"cocos2d.h"

USING_NS_CC;

class

ParticleManager

{

public:

static

ParticleManager*

getInstance()//定义获取实例方法,单例设计模式.see

notes

{

if (

m_pInstance ==

nullptr )//如果实例为空,

m_pInstance =

new

ParticleManager();//创建实例

return

m_pInstance;//返回实例

}

private:

ParticleManager();//构造函数

static

ParticleManager*

m_pInstance;//粒子管理器实例

class

CGarbo//内部类,主要作用是退出游戏的时候,清理内存,原理:程序在结束的时候,系统会自动析构所有的全局变量。事实上,系统也会析构所有的类的静态成员变量,就像这些静态成员也是全局变量一样。

{

public:

~CGarbo()//析构函数

{

if (ParticleManager::m_pInstance!=

nullptr)//如果实例不为空

{

delete

ParticleManager::m_pInstance;//清除单例

}

}

};

static

CGarbo

m_garbo;//定义内部类变量

public:

std::map<:string valuemap>

m_plistMap;//定义存放粒子数据的集合

void

AddPlistData(std::string

strPlist,std::string

strName);//把粒子数据添加到集合里

ValueMap

GetPlistData(std::string

strName);//从粒子集合中获取粒子数据

};

#endif

/* defined(__Moon3d__ParticleManager__) */

#include

"ParticleManager.h"

ParticleManager*

ParticleManager::m_pInstance=NULL;//变量初始化

ParticleManager::CGarbo

ParticleManager::m_garbo;//变量初始化

ParticleManager::ParticleManager()

{

m_plistMap.clear();//构造函数集合清理

}

void

ParticleManager::AddPlistData(std::string

strPlist,std::string

strName)

{

auto

plistData=FileUtils::getInstance()->getValueMapFromFile(strPlist);//获取粒子数据

std::map<:string valuemap>::iterator

it =

m_plistMap.begin();//获取集合

m_plistMap.insert(it,std::pair<:string valuemap>(strName,plistData));//把粒子数据存放到集合里

}

ValueMap

ParticleManager::GetPlistData(std::string

strplist)

{

auto

plistData=m_plistMap.find(strplist)->second;//获取粒子数据

return

plistData;//返回粒子数据

}

说明:

/*****************************************************************************

单例模式也称为单件模式、单子模式,可能是使用最广泛的设计模式。其意图是保证一个类仅有一个实例,并提供一个访问它的全局访问点,该实例被所有程序模块共享。有很多地方需要这样的功能模块,如系统的日志输出,GUI应用必须是单鼠标,MODEM的联接需要一条且只需要一条电话线,操作系统只能有一个窗口管理器,一台PC连一个键盘。

单例模式有许多种实现方法,在C++中,甚至可以直接用一个全局变量做到这一点,但这样的代码显的很不优雅。 使用全局对象能够保证方便地访问实例,但是不能保证只声明一个对象——也就是说除了一个全局实例外,仍然能创建相同类的本地实例。

《设计模式》一书中给出了一种很不错的实现,定义一个单例类,使用类的私有静态指针变量指向类的唯一实例,并用一个公有的静态方法获取该实例。

单例模式通过类本身来管理其唯一实例,这种特性提供了解决问题的方法。唯一的实例是类的一个普通对象,但设计这个类时,让它只能创建一个实例并提供对此实例的全局访问。唯一实例类Singleton在静态成员函数中隐藏创建实例的操作。习惯上把这个成员函数叫做Instance(),它的返回值是唯一实例的指针。

定义如下:

[cpp] view plaincopy

class CSingleton

{

private:

CSingleton()//构造函数是私有的

{

}

static CSingleton *m_pInstance;

public:

static CSingleton * GetInstance()

{

if(m_pInstance == NULL)//判断是否第一次调用

m_pInstance = new CSingleton();

return m_pInstance;

}

};

用户访问唯一实例的方法只有GetInstance()成员函数。如果不通过这个函数,任何创建实例的尝试都将失败,因为类的构造函数是私有的。GetInstance()使用懒惰初始化,也就是说它的返回值是当这个函数首次被访问时被创建的。这是一种防弹设计——所有GetInstance()之后的调用都返回相同实例的指针:

CSingleton* p1 = CSingleton :: GetInstance();

CSingleton* p2 = p1->GetInstance();

CSingleton & ref = * CSingleton :: GetInstance();

对GetInstance稍加修改,这个设计模板便可以适用于可变多实例情况,如一个类允许最多五个实例。

单例类CSingleton有以下特征:

它有一个指向唯一实例的静态指针m_pInstance,并且是私有的;

它有一个公有的函数,可以获取这个唯一的实例,并且在需要的时候创建该实例;

它的构造函数是私有的,这样就不能从别处创建该类的实例。

大多数时候,这样的实现都不会出现问题。有经验的读者可能会问,m_pInstance指向的空间什么时候释放呢?更严重的问题是,该实例的析构函数什么时候执行?

如果在类的析构行为中有必须的操作,比如关闭文件,释放外部资源,那么上面的代码无法实现这个要求。我们需要一种方法,正常的删除该实例。

可以在程序结束时调用GetInstance(),并对返回的指针掉用delete操作。这样做可以实现功能,但不仅很丑陋,而且容易出错。因为这样的附加代码很容易被忘记,而且也很难保证在delete之后,没有代码再调用GetInstance函数。

一个妥善的方法是让这个类自己知道在合适的时候把自己删除,或者说把删除自己的操作挂在操作系统中的某个合适的点上,使其在恰当的时候被自动执行。

我们知道,程序在结束的时候,系统会自动析构所有的全局变量。事实上,系统也会析构所有的类的静态成员变量,就像这些静态成员也是全局变量一样。利用这个特征,我们可以在单例类中定义一个这样的静态成员变量,而它的唯一工作就是在析构函数中删除单例类的实例。如下面的代码中的CGarbo类(Garbo意为垃圾工人):

[cpp] view plaincopy

class CSingleton

{

private:

CSingleton()

{

}

static CSingleton *m_pInstance;

class CGarbo//它的唯一工作就是在析构函数中删除CSingleton的实例

{

public:

~CGarbo()

{

if(CSingleton::m_pInstance)

delete CSingleton::m_pInstance;

}

};

static CGarbo Garbo;

//定义一个静态成员变量,程序结束时,系统会自动调用它的析构函数

public:

static CSingleton * GetInstance()

{

if(m_pInstance == NULL)//判断是否第一次调用

m_pInstance = new CSingleton();

return m_pInstance;

}

};

类CGarbo被定义为CSingleton的私有内嵌类,以防该类被在其他地方滥用。

程序运行结束时,系统会调用CSingleton的静态成员Garbo的析构函数,该析构函数会删除单例的唯一实例。

使用这种方法释放单例对象有以下特征:

在单例类内部定义专有的嵌套类;

在单例类内定义私有的专门用于释放的静态成员;

利用程序在结束时析构全局变量的特性,选择最终的释放时机;

使用单例的代码不需要任何操作,不必关心对象的释放。

进一步的讨论

但是添加一个类的静态对象,总是让人不太满意,所以有人用如下方法来重新实现单例和解决它相应的问题,代码如下:

[cpp] view plaincopy

class CSingleton

{

private:

CSingleton()//构造函数是私有的

{

}

public:

static CSingleton & GetInstance()

{

static CSingleton instance;//局部静态变量

return instance;

}

};

使用局部静态变量,非常强大的方法,完全实现了单例的特性,而且代码量更少,也不用担心单例销毁的问题。

但使用此种方法也会出现问题,当如下方法使用单例时问题来了,

Singleton singleton = Singleton :: GetInstance();

这么做就出现了一个类拷贝的问题,这就违背了单例的特性。产生这个问题原因在于:编译器会为类生成一个默认的构造函数,来支持类的拷贝。

最后没有办法,我们要禁止类拷贝和类赋值,禁止程序员用这种方式来使用单例,当时领导的意思是GetInstance()函数返回一个指针而不是返回一个引用,函数的代码改为如下:

[cpp] view plaincopy

class CSingleton

{

private:

CSingleton()//构造函数是私有的

{

}

public:

static CSingleton * GetInstance()

{

static CSingleton instance;//局部静态变量

return

}

};

但我总觉的不好,为什么不让编译器不这么干呢。这时我才想起可以显示的声明类拷贝的构造函数,和重载 =

操作符,新的单例类如下:

[cpp] view plaincopy

class CSingleton

{

private:

CSingleton()//构造函数是私有的

{

}

CSingleton(const CSingleton &);

CSingleton & operator = (const CSingleton &);

public:

static CSingleton & GetInstance()

{

static CSingleton instance;//局部静态变量

return instance;

}

};

关于Singleton(const Singleton);和 Singleton & operate = (const Singleton&);函数,需要声明成私有的,并且只声明不实现。这样,如果用上面的方式来使用单例时,不管是在友元类中还是其他的,编译器都是报错。

不知道这样的单例类是否还会有问题,但在程序中这样子使用已经基本没有问题了。

考虑到线程安全、异常安全,可以做以下扩展

[cpp] view plaincopy

class Lock

{

private:

CCriticalSection m_cs;

public:

Lock(CCriticalSectioncs) : m_cs(cs)

{

m_cs.Lock();

}

~Lock()

{

m_cs.Unlock();

}

};

class Singleton

{

private:

Singleton();

Singleton(const Singleton &);

Singleton& operator = (const Singleton &);

public:

static Singleton *Instantialize();

static Singleton *pInstance;

static CCriticalSection cs;

};

Singleton* Singleton::pInstance = 0;

Singleton* Singleton::Instantialize()

{

if(pInstance == NULL)

{//double check

Lock lock(cs);//用lock实现线程安全,用资源管理类,实现异常安全

//使用资源管理类,在抛出异常的时候,资源管理类对象会被析构,析构总是发生的无论是因为异常抛出还是语句块结束。

if(pInstance == NULL)

{

pInstance = new Singleton();

}

}

return pInstance;

}

之所以在Instantialize函数里面对pInstance

是否为空做了两次判断,因为该方法调用一次就产生了对象,pInstance == NULL 大部分情况下都为false,如果按照原来的方法,每次获取实例都需要加锁,效率太低。而改进的方法只需要在第一次 调用的时候加锁,可大大提高效率。

*/

赞助本站

人工智能实验室
AiLab云推荐
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港