展会信息港展会大全

Android4.2.2 CameraService服务启动和应用端camera初始化记录
来源:互联网   发布日期:2015-09-29 10:10:52   浏览:1720次  

导读: 之前的10篇博文主要是记录了Android4.2.2的SurfaceFlinger的相关内容,为何之前会投入那么多的时间,原因就在于之前在看camera的架构时,遇到了本地的ANative...

之前的10篇博文主要是记录了Android4.2.2的SurfaceFlinger的相关内容,为何之前会投入那么多的时间,原因就在于之前在看camera的架构时,遇到了本地的ANativeWindow和Surface的内容。而这些是SurfaceFlinger中最常见的应用端的使用品。故而在学习完了SurfaceFlinger之后就来看看Camera的的架构内容。这里先和大家分享android4.2.2的CameraService的启动过程与其的架构。

1.cameraService在何处启动

mediaserver启动了我们cameraservice,即所谓的多媒体相关的服务总管。

int main(int argc, char** argv)

{

signal(SIGPIPE, SIG_IGN);

sp proc(ProcessState::self());

sp sm = defaultServiceManager();

ALOGI("ServiceManager: %p", sm.get());

AudioFlinger::instantiate();//多媒体服务的启动包括音频,摄像头等

MediaPlayerService::instantiate();

CameraService::instantiate();

AudioPolicyService::instantiate();

ProcessState::self()->startThreadPool();

IPCThreadState::self()->joinThreadPool();

}

之前的文章有提到过一般的Service的启动方式,这里是典型的一种BinderService的启动

class BinderService

{

public:

static status_t publish(bool allowIsolated = false) {

sp sm(defaultServiceManager());

return sm->addService(String16(SERVICE::getServiceName()), new SERVICE(), allowIsolated);

}

static void publishAndJoinThreadPool(bool allowIsolated = false) {

sp sm(defaultServiceManager());

sm->addService(String16(SERVICE::getServiceName()), new SERVICE(), allowIsolated);

ProcessState::self()->startThreadPool();

IPCThreadState::self()->joinThreadPool();

}

static void instantiate() { publish(); }//两种初始化binder服务的方式

static status_t shutdown() {

return NO_ERROR;

}

};

CameraService::CameraService()

:mSoundRef(0), mModule(0)

{

ALOGI("CameraService started (pid=%d)", getpid());

gCameraService = this;

}

void CameraService::onFirstRef()//camerservice生成sp后被调用

{

BnCameraService::onFirstRef();

if (hw_get_module(CAMERA_HARDWARE_MODULE_ID,

(const hw_module_t **)&mModule) get_number_of_cameras();//通过hal获取camera的数目

if (mNumberOfCameras > MAX_CAMERAS) {

ALOGE("Number of cameras(%d) > MAX_CAMERAS(%d).",

mNumberOfCameras, MAX_CAMERAS);

mNumberOfCameras = MAX_CAMERAS;

}

for (int i = 0; i

调用CameraService的构造函数后,会自动执行onFirstRef().在该函数内部主要实现了对Camera的Hal层的操作。

通过hw_get_module()获得加载HAL层的模块句柄到mModule成员变量之中,并获得硬件的Camera的个数到mNumberOfCameras之中。可以看到CameraService比起SurfaceFinger这个强大的service来说简单了很多。

step3,camera客户端的建立

通java层的new Camera()来到JNI层,依次经过camera.java再到本地JNI的android_hardware_Camera.cpp。

camera.java中Camera.open()函数的执行

public static Camera open(int cameraId) {

return new Camera(cameraId);

}

/**

* Creates a new Camera object to access the first back-facing camera on the

* device. If the device does not have a back-facing camera, this returns

* null.

* @see #open(int)

*/

public static Camera open() {

int numberOfCameras = getNumberOfCameras();

CameraInfo cameraInfo = new CameraInfo();

for (int i = 0; i

Camera中的类

Camera(int cameraId) {

mShutterCallback = null;

mRawImageCallback = null;

mJpegCallback = null;

mPreviewCallback = null;

mPostviewCallback = null;

mZoomListener = null;

Looper looper;

if ((looper = Looper.myLooper()) != null) {

.....

native_setup(new WeakReference(this), cameraId);

}

JNI层的android_hardware_camera.cpp中:

// connect to camera service

static void android_hardware_Camera_native_setup(JNIEnv *env, jobject thiz,

jobject weak_this, jint cameraId)

{

sp camera = Camera::connect(cameraId);//调用Camera的connect函数

if (camera == NULL) {

jniThrowRuntimeException(env, "Fail to connect to camera service");

return;

}

// make sure camera hardware is alive

if (camera->getStatus() != NO_ERROR) {

jniThrowRuntimeException(env, "Camera initialization failed");

return;

}

jclass clazz = env->GetObjectClass(thiz);

if (clazz == NULL) {

jniThrowRuntimeException(env, "Can't find android/hardware/Camera");

return;

}

......

}

来到Camera应用层的类connect函数,目标是请求CameraService新建一个Camera客户端。

step4:camera客户端的connect函数

sp Camera::connect(int cameraId)

{

ALOGV("connect");

sp c = new Camera();//BnCameraClient

const sp& cs = getCameraService();//获取一个Bpcamerservice

if (cs != 0) {

c->mCamera = cs->connect(c, cameraId);//基于binder驱动最终会去调用camerservice侧的connect,mCamera指向一个Bpcamera

}

if (c->mCamera != 0) {

c->mCamera->asBinder()->linkToDeath(c);

c->mStatus = NO_ERROR;

} else {

c.clear();

}

return c;

}

新建一个应用端的Camera,该类class Camera : public BnCameraClient, public IBinder::DeathRecipient继承关系如下。

cs = getCameraService()通过SM获取CameraService在本地的一个代理。调用connect函数后最终调用CameraService侧的connect()函数。

virtual sp connect(const sp& cameraClient, int cameraId)

{

Parcel data, reply;

data.writeInterfaceToken(ICameraService::getInterfaceDescriptor());

data.writeStrongBinder(cameraClient->asBinder());

data.writeInt32(cameraId);//发送到服务端的数据包

remote()->transact(BnCameraService::CONNECT, data, &reply);//实际调用的是Bpbinder的transact

return interface_cast(reply.readStrongBinder());//传入Bpbinder的handle数值返回一个new BpCamera,实际是服务端的Bncamera

}

};

在这里可以看到这边传入一个本地Camera类对象即new Camera(),这个匿名的binder对象将通过Binder驱动传递给CameraService。主要用于后续CameraService的回调给应用层的Camera来处理

step5:CameraSevice端的connect函数

sp CameraService::connect(

const sp& cameraClient, int cameraId) {

int callingPid = getCallingPid();

LOG1("CameraService::connect E (pid %d, id %d)", callingPid, cameraId);

if (!mModule) {

ALOGE("Camera HAL module not loaded");

return NULL;

}

sp client;

if (cameraId = mNumberOfCameras) {

ALOGE("CameraService::connect X (pid %d) rejected (invalid cameraId %d).",

callingPid, cameraId);

return NULL;

}

char value[PROPERTY_VALUE_MAX];

property_get("sys.secpolicy.camera.disabled", value, "0");

if (strcmp(value, "1") == 0) {

// Camera is disabled by DevicePolicyManager.

ALOGI("Camera is disabled. connect X (pid %d) rejected", callingPid);

return NULL;

}

Mutex::Autolock lock(mServiceLock);

if (mClient[cameraId] != 0) {

client = mClient[cameraId].promote();

if (client != 0) {

if (cameraClient->asBinder() == client->getCameraClient()->asBinder()) {

LOG1("CameraService::connect X (pid %d) (the same client)",

callingPid);

return client;

} else {

ALOGW("CameraService::connect X (pid %d) rejected (existing client).",

callingPid);

return NULL;

}

}

mClient[cameraId].clear();

}

if (mBusy[cameraId]) {

ALOGW("CameraService::connect X (pid %d) rejected"

" (camera %d is still busy).", callingPid, cameraId);

return NULL;

}

struct camera_info info;

if (mModule->get_camera_info(cameraId, &info) != OK) {//获取camera的相关信息

ALOGE("Invalid camera id %d", cameraId);

return NULL;

}

int deviceVersion;

if (mModule->common.module_api_version == CAMERA_MODULE_API_VERSION_2_0) {

deviceVersion = info.device_version;

} else {

deviceVersion = CAMERA_DEVICE_API_VERSION_1_0;

}

switch(deviceVersion) {

case CAMERA_DEVICE_API_VERSION_1_0:

client = new CameraClient(this, cameraClient, cameraId,

info.facing, callingPid, getpid());//client是CameraClient的基类,新建一个camerservice侧的cameraclient

break;

case CAMERA_DEVICE_API_VERSION_2_0:

client = new Camera2Client(this, cameraClient, cameraId,

info.facing, callingPid, getpid());

break;

default:

ALOGE("Unknown camera device HAL version: %d", deviceVersion);

return NULL;

}

if (client->initialize(mModule) != OK) {//cameraclient init初始化,实际调用的是CameraClient

return NULL;

}

cameraClient->asBinder()->linkToDeath(this);

mClient[cameraId] = client;//连接请求后新建立的

LOG1("CameraService::connect X (id %d, this pid is %d)", cameraId, getpid());

return client;//返回CameraClient

}

分以下几个过程来分析这个函数:

a. sp client;一个CameraService内部的客户端类

先查看当前服务端维护的camera client个数mClient[cameraId] != 0,初次启动是该数为0.

b.获取底层camera模块的信息get_camera_info,查看当前的api版本信息是CAMERA_MODULE_API_VERSION_2_0还是CAMERA_MODULE_API_VERSION_1_0.我的平台是1.0故执行如下:

switch(deviceVersion) {

case CAMERA_DEVICE_API_VERSION_1_0:

client = new CameraClient(this, cameraClient, cameraId,

info.facing, callingPid, getpid());//client是CameraClient的基类,新建一个camerservice侧的cameraclient

break;

c.CameraClient的建立,该类继承了public CameraService::Client这个CameraService的内部类,Client继承了BnCamera。

d.client->initialize(mModule)的处理,和硬件相关

status_t CameraClient::initialize(camera_module_t *module) {//一个cameraClient新建一个CameraHardwareInterface硬接口

int callingPid = getCallingPid();

LOG1("CameraClient::initialize E (pid %d, id %d)", callingPid, mCameraId);

char camera_device_name[10];

status_t res;

snprintf(camera_device_name, sizeof(camera_device_name), "%d", mCameraId);

mHardware = new CameraHardwareInterface(camera_device_name);//新建一个camera硬件接口,camera_device_name为设备名

res = mHardware->initialize(&module->common);//直接底层硬件的初始

if (res != OK) {

ALOGE("%s: Camera %d: unable to initialize device: %s (%d)",

__FUNCTION__, mCameraId, strerror(-res), res);

mHardware.clear();

return NO_INIT;

}

mHardware->setCallbacks(notifyCallback,

dataCallback,

dataCallbackTimestamp,

(void *)mCameraId);//将camerservice处的回调函数注册到HAL处

// Enable zoom, error, focus, and metadata messages by default

enableMsgType(CAMERA_MSG_ERROR | CAMERA_MSG_ZOOM | CAMERA_MSG_FOCUS |

CAMERA_MSG_PREVIEW_METADATA | CAMERA_MSG_FOCUS_MOVE |

CAMERA_MSG_CONTINUOUSSNAP | CAMERA_MSG_SNAP | CAMERA_MSG_SNAP_THUMB |

CAMERA_MSG_SNAP_FD); //enable the continuoussnap and singlesnap message by fuqiang

LOG1("CameraClient::initialize X (pid %d, id %d)", callingPid, mCameraId);

return OK;

}

这里出现了一个封装Camera底层操作的一个硬件接口类CameraHardwareInterface,可以屏蔽不同的平台硬件特性,主要是实现的HAL的相关操作。

step6.CameraHardwareInterface接口类的实现initialize()函数。

status_t initialize(hw_module_t *module)

{

ALOGI("Opening camera %s", mName.string());

int rc = module->methods->open(module, mName.string(),

(hw_device_t **)&mDevice);//这里打开camera硬件设备

if (rc != OK) {

ALOGE("Could not open camera %s: %d", mName.string(), rc);

return rc;

}

initHalPreviewWindow();//初始preview的相关流opspreview_stream_ops,初始化hal的预览窗口

return rc;

}

这里的module就是底层的camera模块,最终完成open的操作,这里占时不说明HAL的操作,后续会专门分享camera的HAL的实现。

step7:setCallbacks()设置回调函数,即注册回调函数到HAL处

void setCallbacks(notify_callback notify_cb,

data_callback data_cb,

data_callback_timestamp data_cb_timestamp,

void* user)

{

mNotifyCb = notify_cb;

mDataCb = data_cb;

mDataCbTimestamp = data_cb_timestamp;

mCbUser = user;

ALOGV("%s(%s)", __FUNCTION__, mName.string());

if (mDevice->ops->set_callbacks) {

mDevice->ops->set_callbacks(mDevice,

__notify_cb,

__data_cb,

__data_cb_timestamp,

__get_memory,

this);//传入的是__notify_cb函数

}//硬件设备设置回调

}

分别消息回调,数据回调,时间戳回调,以及内存相关操作的回调。

step8:

mClient[cameraId] = client将新建好的cameraclient对象维护到CameraService中并返回退出connect,而最终通过Binder驱动返回到客户端的是CameraClient的代理BpCameraClient,是一个匿名的Binder服务。

c->mCamera = cs->connect(c, cameraId);将这个服务端的cameraclient维护到本地应用端的Camera的mCamera成员中。而后续的Camera的相关操作都通过该mCamera成员和CameraService进行进一步的交互操作。

camera的一个调用架构图:

赞助本站

人工智能实验室

相关热词: android开发

AiLab云推荐
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港