谷歌与FB在人工智能领域进行比赛,BAT在干什么?

  次阅读 作者:智能小宝 来源:互联网 2016-02-01 15:23 我要评论(0)

在人工智能领域,谷歌和Facebook正在进行着一场比赛,而用人工智能战胜职业围棋选手,被视为这场比赛的第一局。

1月28日,《自然》杂志以封面论文形式宣布Google DeepMind公司的人工智能程序 AlphaGo以5:0的比分战胜欧洲围棋冠军樊麾。

谷歌先胜一局。

“人工智能”概念自诞生起一直争议不断,但人类依旧在发展人工智能的道路上寻求不断地突破,在各种棋类游戏中战胜人类被视为人工智能“智商”的测试方式。

1997年人工智能第一次打败人类国际象棋选手,2006年后再无人类战胜过最顶尖的人工智能国际象棋选手。

而围棋成为了科技大拿们攻坚的下一个城堡——它是典型的人工智能命题,极其困难而充满着吸引力。

1990年代开始,就出现了如“手谈”(中国陈志行教授开发)、“Gun Go”(开源软件组织GNU开发)为代表的计算机围棋程序,但这批程序的棋力尚不及人类业余选手初段。

21世纪,以“蒙特卡洛树搜索”为全新思路的新程序开始在9×9的“小棋盘”实现突破,其中以法国的“MoGo”和“CrazyStone”为代表,棋力基本达到人类职业选手水平。

随着新程序的思路不断改进,“CrazyStone”和日本的“Zen”在真正的围棋比赛上已经能在人类职业棋手让子的前提下赢得盘面。

近年来,随着Google与Facebook这样具有强大研发实力的科技大公司的加入,计算机围棋界更加风起云涌。经过《自然》杂志的介绍,公众已经熟知“AlphaGo”。相比Google此时的风光,也在开发人工智能以战胜人类棋手的Facebook心里可不是好滋味。

谷歌与FB在人工智能领域进行比赛,BAT在干什么?

这两家顶尖科技公司早已展开了一场破解围棋的人工智能竞赛,Facebook开发的人工智能Darkforest(黑暗森林)在今年1月的KGS锦标赛获得了第三名。1月28日下午,Facebook人工智能实验室负责人Yann LeCun表示:“Darkforest被AlphaGo吊打了。”

开发围棋人工智能的瓶颈在哪?你可能小时候看过一个宰相向国王求赏的故事:印度寒舍王要奖赏象棋发明人西萨·班·达依尔,西萨看似胃口不大,对国王请求在棋盘的第一个小格内放一粒麦子,第二个小格放二粒,第三格放四粒,以此类推下去直到放满64个格子。国王没有意识到指数级增长的威力而欣然答允,然而事后才发现整个国库的米都倒干净了仍然无法填满整个棋盘。西萨的结局是被国王杀掉了。

可以想见,指数级增长可算是大规模计算第一大“拦路虎”了。围棋有3的361次方种局面,而可观测到的宇宙,原子数量才10的80次方。

卡耐基梅隆大学机器人系博士、Facebook人工智能组研究员田渊栋曾说过:“围棋难的地方在于它的估值函数非常不平滑,差一个子盘面就可能天翻地覆,同时状态空间大,也没有全局的结构。这两点加起来,迫使目前计算机只能用穷举法并且因此进展缓慢。”

谷歌“AlphaGo”的核心是两种不同的深度神经网络——“策略网络”(policy network)和 “价值网络”(value network)。“策略网络”负责减少搜索的宽度,“价值网络”负责减少搜索的深度,它们合作“挑选”出那些比较有前途的棋步,抛弃明显的差棋,从而将计算量控制在程序可以完成的范围里,重点分析那些有戏的棋着,本质上和人类棋手所做的一样。

Facebook的团队也在几个月前开始独立研究围棋人工智能项目,田渊栋开发的程序“Darkforest”,同样是将卷积神经网络和蒙特卡洛树搜索进行了有机结合。

Yann LeCun在自己的Facebook上发文介绍,第一版的“Darkforest”完全是基于卷积神经网络,通过有监督模式的训练让它来模仿人类选手。研究小组将大量的比赛棋盘格局输入到卷积神经网络中,以此来训练它预测人类选手的下一步走法。

它的输入是一个带有注释的完整的19×19围棋棋盘,而神经网络输出的是一个代表着人类专业棋手每一步走法概率分布的棋盘地图。这充分利用了卷积神经网络的模式识别能力,而这种能力在图像中的物体识别、人脸识别和语音识别方面的成功早就得到了证明。

2015年11月,田渊栋在International Conference on Learning Representations(ICLR,机器学习领域的著名期刊和会议)上提交了论文,称“Darkforest”已达到了围棋五段的水平。

与Facebook公开发表研究进展不同,Google的研究工作显然更加保密。

2015年12月初,Google DeepMind负责人Hassabis在接受对外采访时,就围棋算法问题表示自己还不能谈论此事,“但几个月后,会给公众一个大惊喜。”此时,Google已经将“AlphaGo”的研究论文投稿至《自然》杂志。

就在《自然》刊出“AlphaGo”论文的前一天,2016年1月27日,Facebook对去年11月刊发的论文进行了更新。新论文描述了“Darkforest”的最新版本“Darkforest3”,该程序已经在KGS服务器上运营了一个多月,并取得了成人组第五的排名。这个排名意味着它已经成为全美国最好的前100名选手之一,也步入了世界最顶尖围棋人工智能之列。

谷歌与FB在人工智能领域进行比赛,BAT在干什么?

1月28日,《自然》刊出Google DeepMind “AlphaGo”的论文。而Yann LeCun在Facebook上写道:“AlphaGo的水平比Darkforest高出了6-7个等级。”

本站文章信息来源于网络以及网友投稿,本站只负责对文章进行整理、排版、编辑,是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如果您有什么意见或建议,请联系QQ28-1688-302!

人工智能实验室
相关文章相关文章
  • Pokemon Go之后 AR的下一个爆款何时到来?

    Pokemon Go之后 AR的下一个爆款何时到来?

  • 在美扩张受阻?Line的未来是AI和聊天机器人

    在美扩张受阻?Line的未来是AI和聊天机器人

  • 仅20人的Baobab是如何打造VR影视故事的?

    仅20人的Baobab是如何打造VR影视故事的?

  • 哈佛大学用六种“油墨”3D打印出心脏芯片

    哈佛大学用六种“油墨”3D打印出心脏芯片

网友点评网友点评
阅读推荐阅读推荐

据国外媒体报道,在过去两年内,聊天机器人(chatbot)、人工智能以及机器学习的研发和采用取得了巨大进展。许多初创公司正利用人工智能和...

霍金 视觉中国 图 英国著名物理学家霍金(Stephen Hawking)再次就人工智能(AI)发声,他认为:对于人类来说,强大AI的出现可能是最美妙的...

文|郑娟娟 今年,人工智能(AI) 60岁了。在AI60岁的时候,笔者想要介绍一下AI100,一个刚刚2岁的研究项目,但它的预设寿命是100年,甚至更长...

AlphaGo与李世石的人机大战,为大众迅速普及了人工智能的概念。 但对谷歌而言,除了下围棋,现在的人工智能进展到哪一步了?未来,人工智能...